3.539 \(\int \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=152 \[ \frac{(1-i) \sqrt{a} (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 (-1)^{3/4} \sqrt{a} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

(-2*(-1)^(3/4)*Sqrt[a]*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c
 + d*x]]*Sqrt[Tan[c + d*x]])/d + ((1 - I)*Sqrt[a]*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[
a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.458475, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {4241, 3601, 3544, 205, 3599, 63, 217, 203} \[ \frac{(1-i) \sqrt{a} (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 (-1)^{3/4} \sqrt{a} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(-2*(-1)^(3/4)*Sqrt[a]*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c
 + d*x]]*Sqrt[Tan[c + d*x]])/d + ((1 - I)*Sqrt[a]*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[
a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\left (\left ((-A+i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\right )+\frac{\left (i B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{a}\\ &=\frac{\left (2 i a^2 (-A+i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{\left (i a B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{(1-i) \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}+\frac{\left (2 i a B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{(1-i) \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}+\frac{\left (2 i a B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{2 (-1)^{3/4} \sqrt{a} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}+\frac{(1-i) \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 42.8472, size = 241, normalized size = 1.59 \[ \frac{e^{-i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}} \sqrt{a+i a \tan (c+d x)} \left ((-4 B-4 i A) \log \left (\sqrt{-1+e^{2 i (c+d x)}}+e^{i (c+d x)}\right )+\sqrt{2} B \left (\log \left (-2 \sqrt{2} e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )-\log \left (2 \sqrt{2} e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )\right )\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(I*(1 + E^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]*(((-4*I)*A - 4*
B)*Log[E^(I*(c + d*x)) + Sqrt[-1 + E^((2*I)*(c + d*x))]] + Sqrt[2]*B*(Log[1 - 3*E^((2*I)*(c + d*x)) - 2*Sqrt[2
]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]] - Log[1 - 3*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*E^(I*(c + d*x))*
Sqrt[-1 + E^((2*I)*(c + d*x))]]))*Sqrt[a + I*a*Tan[c + d*x]])/(4*d*E^(I*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.543, size = 895, normalized size = 5.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

-1/2/d*2^(1/2)*(cos(d*x+c)/sin(d*x+c))^(1/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)-1)*(-2
*I*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)-2*I*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2
)+1)+2*I*A*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)+2*I*A*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*
2^(1/2)+1)+I*A*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c
)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))+2*I*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(
1/2))*2^(1/2)-I*B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)*2^(1/2)-I*B*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2
^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+si
n(d*x+c)-1))+I*B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)*2^(1/2)-2*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2))
*2^(1/2)-B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)*2^(1/2)+B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)*2^(1/2)+2
*A*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)+A*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*
x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))+
2*A*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)+2*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1
)+B*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*
x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))+2*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-
1))/(I*sin(d*x+c)+cos(d*x+c)-1)/((cos(d*x+c)-1)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt{i \, a \tan \left (d x + c\right ) + a} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.50771, size = 1501, normalized size = 9.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*sqrt((-2*I*A^2 - 4*A*B + 2*I*B^2)*a/d^2)*log((sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e
^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + d*sqrt(
(-2*I*A^2 - 4*A*B + 2*I*B^2)*a/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) + 1/2*sqrt((-2*I*A^2
- 4*A*B + 2*I*B^2)*a/d^2)*log((sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) +
 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - d*sqrt((-2*I*A^2 - 4*A*B +
2*I*B^2)*a/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) + 1/2*sqrt(4*I*B^2*a/d^2)*log((sqrt(2)*(B
*e^(2*I*d*x + 2*I*c) - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I
*c) - 1))*e^(I*d*x + I*c) + sqrt(4*I*B^2*a/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/B) - 1/2*sqrt(4*I*
B^2*a/d^2)*log((sqrt(2)*(B*e^(2*I*d*x + 2*I*c) - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I
*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - sqrt(4*I*B^2*a/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x -
 2*I*c)/B)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )} \left (A + B \tan{\left (c + d x \right )}\right ) \sqrt{\cot{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(a*(I*tan(c + d*x) + 1))*(A + B*tan(c + d*x))*sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt{i \, a \tan \left (d x + c\right ) + a} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)